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Abstract. We derive the effective dynamical theory for BCS superconductors, based on the effective action
formalism. Both the metallic regime T ∼ TC and the superconducting regime T � TC are studied in
the clean and dirty limit. The full electrodynamics of the problem is formulated in a manifestly gauge-
invariant and transparent way. Furthermore, we consider the effect of particle-hole asymmetry in the
band structure, and discuss its consequences for vortex dynamics and the topological term in the effective
action. The effective action is the starting point for treating (quantum-) dynamical problems involving
BCS superconductors.

PACS. 74.20.Fg BCS theory and its development – 71.10.-w Theories and models of many electron systems

1 Introduction

Dynamical problems in BCS theory [1] are diverse.
They include the electromagnetic response of supercon-
ductors [2], relaxation phenomena, and collective modes
in superconductors [3,4], e.g., the Carlson-Goldman [5]
and the Mooij-Schön [6] mode. Further examples are the
motion of topological defects, e.g., vortex motion in bulk
samples [7–10], quantum tunneling of vortices [11], and
thermally activated or quantum phase slips in mesoscopic
quasi-one-dimensional wires [12,13], as well as fluctua-
tion effects, e.g., corrections to the conductivity above TC

[14–16], the renormalization of the critical temperature
and of the energy gap of low dimensional dirty supercon-
ductors [17,18], and the quantum melting of the vortex
lattice [19]. For all these phenomena, an effective (simple)
theory of weak coupling BCS superconductivity is desir-
able. However, such an effective theory is well established
only close to and above the critical temperature, where
Time Dependent Ginzburg-Landau (TDGL) theory – al-
though only under severe additional restrictions – can be
derived from a microscopic starting point [20]. Since the
works of Abrahams and Tsuneto [21], Popov [22], Klein-
ert [23], Ambegaokar [24], and Stoof [25] some is known
about the extensions to lower temperatures, but contro-
versies concerning the subject persist. In particular the
prefactor of the topological term in the effective action is
under discussion, with several papers [26–29] advocating
a much larger one than others [9,30,35,41].
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Previous studies were mostly restricted to the clean
limit at zero temperature and neglected the Coulomb in-
teraction [26–28]. In the present paper, we extend the
existing literature in four ways. 1) We fully account for
the Coulomb interaction between electrons and between
electrons and the ionic Jellium background. 2) We also
consider the dirty limit, in which electrons move diffu-
sively rather than ballistically. 3) We allow for particle-
hole asymmetry, i.e., the dependence of the density of
states on energy, as quantified by its derivative at the
Fermi surface N ′0 = ∂εN(εF). The relevance of particle-
hole asymmetry for vortex motion and the correspond-
ing Hall-effect has recently been pointed out in references
[9,30]. 4) Finally, a guiding principle is called for, as the
expansion of the effective action that we will perform (see
below) is quite involved. We will make extensive use of
gauge invariance and the corresponding Ward-identities.
Although perturbation expansions up to a definite order
may break gauge-invariance, the Ward identities allow us
to construct a manifestly gauge-invariant effective action
within perturbation theory.

In references [26–29] Galilei invariance in the clean
limit was used as a guiding principle. We argue that in
real superconductors Galilei invariance can be broken by
at least four mechanisms. 1) Scattering on impurities and
phonons break Galilei invariance in a trivial way. 2) Galilei
invariance would require a perfect quadratic dispersion,
which is not realized in the bandstructure of usual crystal
backgrounds. 3) The coupling to electromagnetism, which
is Lorentz invariant, also (weakly) breaks Galilei invari-
ance (a vF/c effect). 4) At nonzero temperature the gas
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of normal quasi-particle excitations provides a preferred
frame of reference which breaks Galilei invariance.

Instead of Galilei invariance, we stress the role of gauge
invariance. The corresponding Ward identities express
particle number and charge conservation and can be used
to rewrite the effective action in a manifestly gauge-
invariant way. This means that in the superconducting
phase the effective action depends only on the ampli-
tude of the energy gap |∆|, the superfluid velocity vs =

1
2m (∇ϕ − 2e

c
A), the chemical potential for Cooper pairs

Φ = V − ϕ̇/2e, and the elctromagnetic fields E and B.
This is in accord with the Anderson-Higgs mechanism [31]:
the superconducting phase ϕ does not appear explicitly in
the effective action. We will see below that, for example,
if the equilibrium value of the energy gap |∆0| does not
depend on space and time coordinates and all fields vary
slowly in space and time, the action in the particle-hole
symmetric case has the form

S =

∫
d̄q

2

( εE2 + B2/µ

4π
+χA|∆1|

2+χLv2
s +χJΦ

2
)
. (1)

Here |∆1| is the small deviation of the order parameter
from the equilibrium value, the χ’s are generalized sus-
ceptibilities, ε is the dielectric function of the metal, and
µ is the magnetic permeability. The terms involving E and
B include the electronic polarization contributions to the
electromagnetic fields that will be discussed below in Sec-
tion 3. The term involving the amplitude fluctuations |∆1|
is discussed in Section 4. Most interesting are the last two
terms: the first describes how the gradient of the super-
conducting phase ∇ϕ tries to adjust to the local vector
potential A. The prefactor χL is proportional to the su-
perfluid density ns and this term is just the kinetic energy
of the superfluid, related to the DC Josephson effect and
to London theory. Similarly, the less familiar second term
describes how the time derivative of the superconducting
phase ϕ̇ tries to adjust to the local scalar potential V .
This is the term that produces the AC Josephson effect.
The prefactor χJ is proportional to the superfluid density
as well. If the critical temperature TC is approached from
below, the superfluid density vanishes, and the chemical
potential for Cooper pairs Φ and the chemical potential for
quasi-particles V decouple. This last term also describes
how the motion of vortices in the mixed state leads to a
voltage drop across the sample via the time dependence
of the phase.

In case particle-hole symmetry is broken, an additional
contribution to the action arises, which is proportional to
the derivative of the density of states at the Fermi energy
N ′0 = ∂εN(εF). The dimensionless parameter that charac-
terizes the amount of particle-hole symmetry breaking is
γ = ∆N ′0/(2λN

2
0 ), with BCS coupling constant λ. In usual

weak coupling superconductors with λN0 ∼ 10−1 and
∆/εF ∼ 10−3 the parameter γ is rather small, γ ∼ 10−2.
Nevertheless, it is important for vortex motion, and its
possible relation to the sign-anomaly in the Hall effect
has been discussed in references [9,30]. The general form

of the particle-hole asymmetric part in the action is

S = −2ieN0Γ

∫
dx Φ

(
|∆0 +∆1|

2 − |∆0|
2
)
, (2)

with Γ = γ/∆0. The physical origin of this term is the
coupling of the electronic density to the energy gap when
particle-hole symmetry is broken. Thus, fluctuations in
the amplitude of the gap cause charge density fluctuations,
which couple directly to the potential Φ, see also Section 4
for a discussion of this point.

Our discussion below will be within the imaginary
time Matsubara formalism. Here we will not address
the important point of relaxation mechanisms like spin-
flip, electron-electron, and electron-phonon scattering that
could be accounted for. We will simply assume that some
relaxation mechanism is available which brings our super-
conducting system into equilibrium with a big reservoir.
We would like to emphasize that this assumption is by no
means in contradiction with the main goal of our paper: to
provide a convenient approach for studying dynamical and
nonequilibrium phenomena in superconductors. Rather, it
restricts the scope of the phenomena which can be effec-
tively described with our methods.

In what physical situations is our imaginary time for-
malism meant to work? One such situation is quite stan-
dard: a superconductor only slightly driven out of equi-
librium, so that one can describe nonequilibrium effects
within a linear response theory and express the results in
terms of equilibrium correlation functions, which – after
a proper analytic continuation – will describe the dynam-
ics of the system in real time. Another important class of
phenomena is related to (quantum) fluctuations of the su-
perconducting order parameter, both of its modulus and
its phase. Such fluctuations may – and in general do –
involve virtual states with the electron subsystem driven
far from equilibrium. Examples are quantum phase slips in
thin superconducting wires [13] and quantum tunneling of
vortices [11]. All such processes are also conveniently de-
scribed within the formalism developed below.

The analysis of the real time dynamics of a supercon-
ductor with strong deviations of the quasiparticle distribu-
tion function from equilibrium in general requires methods
based on the Keldysh technique that keep track explicitly
of the distribution function, see reference [32]. Strong non-
equilibrium real time dynamics is beyond the scope of the
present paper and will be discussed elsewhere. Here we
would only like to point out that many features of our
imaginary time analysis can be directly generalized and
used also within the real time Keldysh technique. Thus,
also for the real time case a lot can be learned already from
the present imaginary time formulation of the problem.

The calculation that leads to the effective actions
(1, 2) will be presented in the next section. Its physical
content is discussed in Sections 3 (normal state) and 4
(superconducting state). Where possible, we give the ex-
plicit forms of the propagators of the various fields in the
hydrodynamic limit (in Sects. 3 and 4), whereas the more
general (and more complicated) expressions are deferred
to Appendix B, where also the calculation of polarization
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bubbles is outlined. The derivation of the Ward identities
is given in Appendix A.

Parts of the present paper were implicit in refer-
ences [9,13] and to a somewhat lesser extent in references
[17,22–24,33,34].

2 Model and derivation of effective action

The starting point for our analysis is a model Hamiltonian
that includes a short range attractive weak coupling BCS
and a long range repulsive Coulomb interaction. We rep-
resent the latter in terms of the fluctuating gauge fields of
electro-magnetism, V and A. The idea is to integrate out
the electronic degrees of freedom on the level of the parti-
tion function, leaving us with an effective theory in terms
of collective fields [22–24,33,34]. The partition function
Z is conveniently expressed as a path integral over the
anticommuting electronic fields ψ̄, ψ and the commuting
gauge fields V and A, together with a gauge condition.
The Euclidean action reads

S =

∫
dx
(
ψ̄σ[∂τ − ieV + ξ(∇−

ie

c
A)]ψσ

−λψ̄↑ψ̄↓ψ↓ψ↑ + ieniV + [E2 + B2]/8π
)
. (3)

Here ξ(∇) ≡ −∇2/2m − µ describes a single conduction
band with quadratic dispersion, λ is the BCS coupling
constant, σ =↑, ↓ is the spin index, and eni denotes the
background charge density of the ions. In our notation dx
denotes d3xdτ and we use units in which ~ and kB are
set equal to unity. The field strengths are functions of the
gauge fields through E = −∇V +(1/c)∂τA and B = ∇×A
in the usual way for the imaginary time formulation.

We use a Hubbard-Stratonovich transformation to
decouple the BCS interaction term and to introduce the
superconducting energy gap ∆ = |∆|eiϕ as an order
parameter

exp

(
λ

∫
dxψ̄↑ψ̄↓ψ↓ψ↑

)
=

[∫
D2∆e−λ

−1
∫

dx|∆|2
]−1

×

∫
D2∆e−

∫
dx(λ−1|∆|2+∆ψ̄↑ψ̄↓+∆̄ψ↓ψ↑), (4)

where the first factor is for normalization and will not
be important in the following. As a result, the partition
function now reads

Z =

∫ ′
D2∆DVD3AD2Ψ exp

(
−S0 −

∫
dxΨ̄G−1Ψ

)
,

S0[V,A,∆] =

∫
dx

(
E2 + B2

8π
+ ieniV +

|∆|2

λ

)
, (5)

where the prime on the integral denotes the restriction to
a certain gauge choice for the electromagnetic potentials
V and A. Below in Section 3, we will sometimes use the
Coulomb gauge ∇ ·A ≡ 0 in which the vector potential is

completely transverse. In equation (5) we have also intro-
duced the Nambu spinor notation for the electronic fields

Ψ =

(
ψ↑
ψ̄↓

)
, Ψ̄ =

(
ψ̄↑ ψ↓

)
(6)

and the matrix Green’s function in Nambu space

G−1 =

(
∂τ − ieV + ξ(∇− ie

c A) ∆

∆̄ ∂τ + ieV − ξ(∇+ ie
c
A)

)
;

G =

(
G F

F̄ Ḡ

)
, (7)

with normal and anomalous Green’s functions denoted by
G and F .

After a final Gaussian integration over the electronic
degrees of freedom, we are left with the effective action

Seff = −Tr lnG−1 + S0[V,A,∆]. (8)

Here, the trace “Tr” denotes both a matrix trace in Nambu
space and a trace over internal coordinates or momenta
and frequencies. In the following “tr” is used to denote a
trace over internal coordinates only.

2.1 The equations of motion

The Euler-Lagrange equations obtained by varying the ac-
tion (8) with respect to V and A yield the two Maxwell
equations that describe Thomas-Fermi and London
screening, respectively. They read

∇ ·E = 4πie[ne − ni],

−
1

c
∂τE +∇×B =

4π

c
je. (9)

Note that the ionic background contributes only to the
charge density, and not to the current, if we describe
the system in the frame where the ions are at rest.
Both the electronic density ne and current density je are
expressed through the diagonal elements G and Ḡ of the
matrix (in Nambu space) electron Green’s functions G.
Explicitly,

ne(x) = Tr[Gσ3] = Ḡ(x, x) −G(x, x),

je(x) =
e

m
Tr[(i∇1 +

e

c
Aσ3)G] (10)

=
e

m

[
(i∇+

e

c
A)G(x, y) + (i∇−

e

c
A)Ḡ(x, y)

]
y=x

.

The matrices σ1,2,3 are the Pauli matrices and below we
will also use σ± = 1

2 (σ1 ± iσ2).
The electronic density ne is a function of the chemical

potential µ, and in the presence of particle-hole asym-
metry also of the energy gap ∆. At zero temperature
it satisfies ne(µ = εF,∆ = 0) = ni. In general the
electronic density can be expanded as ne(µ + ieV,∆) =
ni + 2ieN0V + 2N0Γ∆

2 + · · · , with the density of states
per spin N0 and the particle-hole asymmetry parameter
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Γ = ∂εN(εF)/(2λN2
0 ), see reference [35]. The requirement

of overall charge neutrality makes the electrostatic poten-
tial V a function of the energy gap, V∆ = −iΓ∆2/e. Lon-
gitudinal electric fields and deviations of the electronic
density ne from the ionic density ni are screened on the
Thomas-Fermi length scale λ−2

TF = 8πe2N0. In the su-
perconducting state, in addition the magnetic field B is
screened on the scale of the London penetration depth
λ−2

L = 4πe2ns/mc
2, where ns denotes the superfluid den-

sity.
Varying the action (8) with respect to ∆̄ yields the

BCS gap-equation for ∆

∆(x) = Tr[Gσ−] = λF (x, x), (11)

with the anomalous Green’s function F . The gap equa-
tion has a constant solution ∆0 = |∆0| exp(iϕ0) as well as
more complex time and space dependent solutions, such
as vortices.

2.2 Perturbation expansion

The effective action in equation (8) is the starting point
for an expansion around the constant saddle point solution
∆ = ∆0, V = V∆, and A = 0. We absorb the constant
V∆ in the chemical potential µ from now on, so that it
doesn’t appear explicitly in the following.

There are two ways of organizing the perturbation
expansion. In this section we will expand in V , A, and
∆1 = ∆ − ∆0, and to this end split the inverse Green’s
function in equation (7) into an unperturbed part G−1

0 and
a perturbation G−1

1 , according to

G0 =

(
G F

F̄ Ḡ

)
, G−1

1 =

(
K − L ∆1

∆̄1 −K − L

)
,

K =
m

2

( e

mc

)2

A2 − ieV , L =
−i

2

e

mc
{∇,A}, (12)

where {., .} denotes an anti-commutator. In the following
it is understood that the unperturbed Green’s function
has a chemical potential µ+ ieV∆ and an energy gap ∆0.
Without loss of generality, we choose ∆0 to be real.

At first sight the splitting we have just made seems
not convenient and to restrict severely the generality of
our analysis, since we expand around a state with constant
phase of the order parameter. However, this does not mean
that we exclude, e.g., current carrying states for which the
phase of ∆ depends on coordinates in an essential way and
is not small everywhere in the superconductor. We show
below that the actual parameters of our expansion are the
gauge invariant linear combinations of the electromagnetic
potentials and the phase of the order parameter, Φ = V −
ϕ̇/2e and vs = 1

2m (∇ϕ − 2e
c

A). Only these parameters
(and not V , A, and ϕ separately) are required to be small
within the framework of our analysis. Thus, also states
that carry a current which is not necessarily small can be
described. This is a direct consequence of gauge invariance
which plays an important role in our consideration.

The other way of organizing the expansion is com-
mented upon in Subsection 2.5. It involves a unitary gauge
transformation of the fields, after which one expands di-
rectly in the gauge invariant fields Φ and vs, and a man-
ifestly real perturbation ∆1 = |∆1|. With the help of a
Ward-identity, the two expansions can be shown to be
fully equivalent. For pedagogical purposes we postpone
the corresponding discussion (see Subsect. 5) and proceed
with the expansion.

The trace of the inverse Green’s function can be ex-
panded in G−1

1 using

Tr lnG−1 = Tr lnG−1
0 + Tr

∞∑
n=1

(−1)n+1

n
(G0G

−1
1 )n, (13)

and only terms of order n = 1 and 2 will be needed here.
The n = 1 term in the effective action is −Tr(G0G

−1
1 ).

The explicit evaluation of the trace yields

S1 = −tr[K(G− Ḡ)− L(G+ Ḡ) + ∆̄1F +∆1F̄ ] (14)

=

∫
dx

(
−ieneV +

ne2

2mc2
A2 −

∆̄1∆0 +∆1∆̄0

λ

)
,

where we have used G(x, x) = −Ḡ(x, x) = −ne/2, and
F (x, x) = ∆0/λ according to the gap equation.

The second order contribution S2 = 1
2Tr(G0G

−1
1 )2

reads

S2 =
1

2
tr[GKGK + ḠKḠK − 2FKF̄K + 2FLF̄L

+GLGL+ḠLḠL−2GKGL+2ḠKḠL−2F̄KFL

+ 2FKF̄L+ 2F∆̄1GK − 2F̄∆1ḠK + 2G∆1F̄K

− 2Ḡ∆̄1FK − 2F∆̄1GL− 2F̄∆1ḠL− 2G∆1F̄L

− 2Ḡ∆̄1FL+ F̄∆1F̄∆1+F∆̄1F∆̄1+ 2G∆1Ḡ∆̄1].
(15)

As we are interested in contributions up to second order in
the fields, it suffices to take K = −ieV in this expression.

2.3 Longitudinal and transverse physics

The next step is the evaluation of the traces in the expan-
sion equation (15). For two Green’s functions G and G′,
and two fields A and A′, the following identities hold:

tr[GAG′A′] =

∫
d̄qA(q)A′(−q){1}GG′;

tr[GAG′{∇a, A
′
a}] =

2i

∫
d̄qA(q)A′a(−q){(p+ q/2)a}GG′; (16)

tr[G{∇a, Aa}G
′{∇b, A

′
b}] =

− 4

∫
d̄qAa(q)A′b(−q){(p+ q/2)a(p+ q/2)b}GG′,

where a = x, y, z (repeated indices are summed over) and
we have introduced the short hand notation q = (q, ωµ),
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∫
d̄q ≡ T

∑
ωµ

∫
d3q/(2π)3, as well as the bracket notation

for polarization bubbles

{B}GG′ (q) =

∫
d̄pBG(p+ q)G′(p). (17)

Furthermore, we will split all fields in longitudinal and
transverse components with respect to the momentum q
by making use of the corresponding projection operators

P abL = qaqb/q2, P abT = δab − qaqb/q2 (18)

that satisfy P 2
i = Pi, PLPT = PTPL = 0, and PL + PT =

1. With the help of the projection operators any vector
field V a(q) can be decomposed into a longitudinal part
V aL (q) = P abL V b(q) = (V · q/q2)qa and a transverse part
V aT (q) = P abT V b(q) = V a−(V ·q/q2)qa. Similarly, tensors
T ab(q) are decomposed into T abL (q) = Tr[PLT ]P abL and
T abT (q) = 1

2Tr[PTT ]P abT , where the extra half in the latter
arises since TrPT = d− 1 = 2, in contrast to TrPL = 1.

We use these considerations to simplify the polariza-
tion bubbles that we encounter in the perturbation expan-
sion. By splitting (p + q/2)a into longitudinal and trans-
verse components, we decompose the bubbles as

{(p+ q/2)a}GG′ =
{
Q/q2

}
GG′

qa,

{(p+ q/2)a(p+ q/2)b}GG′ =
{
Q2/q2

}
GG′

P abL

+
{

(p×q)2/2q2
}
GG′

P abT , (19)

where in order to simplify notation, we have introduced
Q = q · (p + q/2). In the following, we need only specific
polarization bubbles for which we introduce the notation

g0 = {1}GG (q) , g1 =
{
Q/q2

}
GG

(q), (20)

g2 =
{
Q2/q4

}
GG

(q) , g3 =
{

(p× q)2/2q4
}
GG

(q).

Analogously the fi, hi, ki denote {..}FF , {..}GḠ, and
{..}FG respectively.

Finally, as pointed out in reference [17], it is advanta-
geous to also split the fluctuations of the energy gap in real
longitudinal and transverse components ∆1 = ∆L + i∆T.
We will see in the next subsection that ∆L and ∆T appear
in the effective action in rather different ways, related to
their different physical nature.

2.4 The effective action

The effective action up to second order in the fields ∆L,
∆T, V , and A is found by gathering the terms from S0,
S1, and S2 (Eqs. (5, 14, 15)). We split Seff into a constant
mean field part S0

eff and a Gaussian fluctuation part S2
eff .

No first order contribution is present, as the terms ieniV
and −ieneV cancel by charge neutrality. We find

S0
eff = −Tr lnG−1

0 [∆0] + βV∆2
0/λ, (21)

S2
eff =

∫
d̄q
[E2 + B2

8π
+
∆2

L +∆2
T

λ
+
nm

2

( e

mc

)2

A2

+

(
∆L ∆T eV

eAa

mc

)
q

M̂q

 ∆L

∆T

eV
eAb/mc


−q

]
,

where V denotes the volume of the system, β the inverse
temperature, and we have introduced a matrix notation
with

M̂q =


h0 + f0 −ih0 −2ik0 −2qak1

ih0 h0 − f0 −2k0 2iqbk1

−2ik0 2k0 f0 − g0 iqbg1

−2qak1 −2iqak1 iqag1 mab

 ,

mab = q2[(g3 + f3)P abT + (g2 + f2)P abL ]. (22)

In the above expression for the matrix M̂q it is understood
that all kernels are taken at momentum and frequency q.

The physical content of the effective action (21) can
be brought out more clearly by “diagonalizing the ma-
trix”, i.e., rewriting equation (21) in terms of the eigen-
modes. To this end we introduce the superfluid velocity
and the chemical potential for Cooper pairs in terms of
combinations of the gauge fields and the transverse gap
fluctuations as vs = 1

2m [(∇∆T)/∆0 −
2e
c A] and Φ =

V − 1
2e∆̇T/∆0.

The terms in equation (21) that couple the transverse
phase-like gap fluctuations to the other fields assume a
diagonal form with the use of the Ward-identity (A.8).
Little algebra shows explicitly that

[λ−1 + h0 − f0]∆2
T + 4k0V (q)∆T(−q)

− (4ie/mc)k1q ·A(q)∆T(−q) ≡ (4e2∆0k0/iωµ)[Φ2 − V 2]

+ 4m∆0k1P
ab
L

[
(e2AaAb/m2c2)− vas v

b
s

]
,

which we use to eliminate ∆T from the action. Further-
more, the field strengths are invariant under gauge trans-
formations, so that they may be expressed in Φ and vs

as

|E|2 = q2|Φ(q)|2 +
m2ω2

e2
|vs(q)|

2

+
mω

e
[Φ(q)q · vs(−q) + Φ(−q)q · vs(q)]

|B|2 =
m2c2

e2
q2P abT vas (q)vbs (−q), (23)

which allows us to rewrite the terms related to A and V
in terms of E and B. Finally, due to the Ward-identities
(A.6, A.7), the remaining terms in A and V are seen to
vanish. Together with the propagator χA(q) = [2λ−1 +
h0(q) + h0(−q) + 2f0(q)] for the longitudinal gap fluctua-
tions and introducing the London and Josephson suscep-
tibilities χL(q) = −8m∆0k1(q) and χJ(q) = 8e2∆0k0(q)/
iωµ, we obtain the “normal” and the “superconducting”
contributions to the effective action

Ssc[∆L, Φ,vs] = −Tr ln
(
G−1

0 [∆0]G0[0]
)

+ βV∆2
0/λ

+
1

2

∫
d̄q
(
χA∆

2
L + χJΦ

2 + χLv2
s

)
, (24)

Snm[E,B] = −Tr lnG−1
0 [0]

+
1

2

∫
d̄q
(
χEE2 − χMB2

)
. (25)
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Here we have also introduced the electric and magnetic
susceptibilities χE(q) = 2e2g1(q)/(miωµ) and χM(q) =
2e2[g2(q) + f2(q)− g3(q)− f3(q)]/(m2c2).

The terms in equation (21) that couple the longitudi-
nal gap fluctuations to the other fields are nonvanishing
only if particle-hole symmetry is broken. Again by virtue
of the Ward-identity equation (A.8), they combine into
the action Sph that describes the effects of particle-hole
symmetry breaking

Sph =

∫
d̄q
(1

2
χΓ (q)∆L(q)∆L(−q) (26)

+χ
‖
Γ (q)Φ(q)∆L(−q) + χ⊥Γ (q)q · vs(q)∆L(−q)

)
,

where we have introduced the susceptibilities χΓ (q) =

h0(q) − h0(−q), χ
‖
Γ (q) = −2ie[k0(q) + k0(−q)], and

χ⊥Γ (q) = 2[k1(q)− k1(−q)].
Defining

Sem[E,B] =

∫
d̄q

(
E2 + B2

8π

)
, (27)

we obtain the final result

Seff = Ssc[∆L, Φ,vs] + Snm[E,B]

+ Sph[∆L, Φ,vs] + Sem[E,B]. (28)

Using the standard definitions ε = 1 + 4πχE and µ−1 =
1−4πχM, we arrive at the form (1) quoted in the introduc-
tion. The expressions (24–28) represent the main result of
this section, and a convenient starting point for any study
of dynamical processes.

Note that in arriving at equation (28) the terms
±ieni/eV from S0 and S1 have cancelled, since on the av-
erage the electronic and ionic charge densities cancel. This
point was not appreciated in references [27–29,36], where
no coupling to electromagnetism was included and only
the term from S1 was found.

We have decomposed the action into four parts: the su-
perconducting contribution Ssc, the normal metallic con-
tribution Snm, the particle-hole symmetry breaking action
Sph, and the action of the free electromagnetic fields Sem.
Let us emphasize that the possibility of such a decompo-
sition is a direct consequence of the Ward identities. As
these identities follow from gauge invariance only and do
not depend on the presence and concentration of impuri-
ties in a superconductor, we conclude that the splitting of
the full action into four parts in equation (28) holds not
only for clean superconductors but rather for an arbitrary
concentration of impurities.

2.5 Gauge invariance

At this stage it is appropriate to discuss the consequences
of gauge invariance for the effective action (28) a bit more
deeply, see also Appendix A. Inspecting equation (28), we
observe that the transverse component of the energy gap
∆T has completely disappeared from the effective action.

This is just the Anderson-Higgs mechanism [31]: the Gold-
stone mode ∆T is “gauged away” and appears only within
the combinations Φ and vs. Since the electromagnetic field
strengths E and B have been expressed in terms of Φ and
vs, the integral over the field ∆T in the partition function
factorizes and contributes an irrelevant constant.

The partition function Z can be represented in two
equivalent ways. In the first, the Goldstone mode is
explicitly present and the four gauge field components
are restricted by a gauge condition. In the second, the
Goldstone mode is “eaten” by the gauge condition and
the four gauge field components are unrestricted. Explic-
itly∫ ′
D∆LD∆TDV D

3A exp(−Seff [∆L,∆T, V,A]) ≡∫
D∆LDΦD

3vs exp(−Seff [∆L, Φ,vs]), (29)

where the prime on the first integral denotes that it is
supplemented by a gauge condition. In both cases 5 dy-
namical degrees of freedom are present.

We now return to the point raised in Subsection 2.2
concerning the two possible ways of organizing the expan-
sion. Observe that the trace of the inverse Green’s func-
tion, which is the starting point of the perturbation ex-
pansion, is invariant under unitary transformations

Tr lnG−1 = Tr lnUG−1U−1. (30)

Choosing U(θ) = exp(−iσ3θ/2) with an arbitrary space
and time dependent function θ(x), we obtain from the
old Green’s function (7), the new inverse Green’s function

G̃−1 = exp(−iσ3θ/2)G−1 exp(iσ3θ/2) that reads

G̃−1 =

(
∂τ − ieΦ+ ξ(∇+ imvs) e−iθ∆

eiθ∆ ∂τ + ieΦ− ξ(∇− imvs)

)
. (31)

If ∆ = |∆|eiϕ, such a gauge transformation can be used
to make the energy gap in the Green’s function real by
choosing θ = ϕ. Instead, the superconducting phase ap-
pears in the chemical potential for Cooper pairs Φ =
V − ϕ̇/2e that replaces V and in the superfluid veloc-
ity vs = 1

2m (∇ϕ− 2e
c A) that replaces −eA/mc. Thus, we

may identify ϕ with ∆T/∆0 from the previous subsection.
Note that the unitary operator U(θ) is related to a

local U(1) gauge transformation

V → V −
1

2e
θ̇;

A → A−
c

2e
∇θ;

Ψ =

(
ψ↑
ψ̄↓

)
→ U(θ)Ψ =

(
e−iθ/2ψ↑
eiθ/2ψ̄↓

)
;

∆ → e−iθ∆, (32)

that leaves the field strengths invariant. Since the phase
of all charged fields is rotated by a gauge transformation,
one also should replace the term ieniV in equation (5) by
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ieniΦ. The point being, that the ionic background charge
density is eventually made up by particles and correspond-
ing fields as well. In principle, one should describe the pos-
itively charged ions in the starting point (3) by a field ψi,
and include a term ψ̄i[∂τ +ieV ]ψi in the action. A unitary
transformation of the electronic fields ψσ → e−iθ/2ψσ is
then accompagnied by a transformation ψi → e+iθ/2ψi,
which effectively turns ieniV into ieniΦ.

After the unitary transformation with θ = ϕ, the per-
turbation expansion can also be done on the level of G̃−1,
in terms of the real field ∆1 and

K̃ =
m

2
v2

s − ieΦ; L̃ =
i

2
{∇,vs}. (33)

The whole derivation of the effective action is completely
analogous and even slightly easier. In this way, one again
recovers the result (28), now without making use of the
assumption about small electromagnetic potentials and
phase. These considerations emphasize the remarkable
role of gauge invariance and conclude our derivation of
the effective action for a BCS superconductor.

3 The normal metal and Ginzburg-Landau
theory

3.1 The normal metal

As a first application of equation (28), we will consider
the normal metal limit for temperatures above the critical
temperature TC. If one puts ∆0 = 0 in the normal metal
and discards fluctuations of the energy gap, the electronic
polarization terms can be expressed in terms of the locally
gauge invariant field strengths E and B only, as is evident
from equation (28) since in the normal metal Ssc ≡ 0. This
contrasts to the superconducting case where also terms in
Φ and vs survive. For the normal metal we obtain

Snm+Sem =

∫
d̄q
(E2+B2

8π
−
e2

q2
g0E

2+
e2

m2c2
(g3−g2)B2

)
.

(34)

This action describes standard metal physics in the RPA
approximation, as is discussed for instance in reference
[37]. Its analysis is most conveniently done in the Coulomb
gauge. After an analytic continuation to real frequencies
iωµ → ω+iδ and |ωµ| → −iω, the zeroes of the propagators
describe modes of the electronic system. Two useful limits
are the clean and dirty limit, in which ω,Dq2 � τ−1

r

and ω,Dq2 � τ−1
r respectively. Here D = v2

Fτr/3 is the
diffusion constant with a single particle relaxation time
due to impurity scattering τr and Fermi velocity vF. For
frequencies of the order of the Fermi energy or the plasma
frequency, metallic systems are always in the clean limit.

In the dirty limit, g0 is given by equation (B.11) and
the part of the action related to the longitudinal electric
field has the form

Snm + Sem =

∫
d̄q
(

1 +
8πe2N0D

|ωµ|+Dq2

)E2

8π
· (35)

Since 8πe2N0 = k2
TF, with Thomas-Fermi wavevector kTF,

the low frequency part |ωµ| � Dq2 of this action describes
metallic screening. In the opposite high frequency limit
the second term of the action describes dissipation [38]: in
terms of the conductivity σ = 2e2N0D, the second part
reads σE2/2|ωµ|.

In the clean high frequency limit ω � τ−1
r , vFq,

the kernel g0 is given by equation (B.7). Using g0 ≈
−N0v

2
Fq2/(3ω2), the longitudinal plasmon at frequency

ω2
p = 4πe2n/m is recovered.

The remaining part of equation (34), related to the
magnetic and transverse electric fields, describes purely
transverse physics. The kernel g3 can be approximated
for low momenta and frequencies as g3 = (p2

F/3q2)g0 +
N0/12 + · · · , and in the normal state the kernel g2 can be
expressed through the Ward-identities (A.6, A.7) as g2 =
−nm/2q2 + (mω/q2)2g0. In the dirty limit the bubbles
g2 and g3 almost cancel. The remaining action for the
transverse vector potential in the dirty limit is

Snm + Sem =

∫
d̄q
(
q2 +

ω2
µ

c2
+

4πσω2
µ/c

2

|ωµ|+Dq2

)A2

8π
· (36)

The low frequency limit describes the normal skin-effect,
i.e., iω = c2q2/(4πσ), for wavelengths larger than the
mean free path l = vFτr.

In the opposite clean limit and for small frequencies
ωµ � vFq, we find explicitly that g3 − g2 ≈ N0/12 +
πN0|ωµ|/(4vFq

3) + · · · . The dispersion is now different,
iω = 4vFλ

2
L(0)|q|3/3π, with the zero temperature London

length given by λ−2
L (0) = 4πe2n/mc2, and is related to the

anomalous skin-effect. Landau diamagnetism is recovered
from the small constant term in g3−g2 = N0/12+· · · , and
this is a (vF/c)

2 correction to the “1/8π” in Sem in equa-
tion (27): µ−1 = 1 + 1/(4λ2

L(0)p2
F). Pauli paramagnetism

is not present in the action (28), since we did not include
a Zeeman coupling in the original model (3). Finally, two
transverse light modes with dispersion ω2

µ = ω2
p+c2q2 are

present in the high frequency clean limit.

3.2 The Ginzburg-Landau expansion

In the normal metal close to TC, fluctuations of the or-
der parameter ∆ can be studied using Ginzburg-Landau
theory [39,40], or its time dependent (TDGL) generaliza-
tion [20,41–43]. Within our present formalism, the TDGL
effective action is readily derived starting from the ac-
tion (28). The expansion in Φ and vs is already performed
and we need only to expand all terms in powers of ∆.
In addition, we need parts of the third and fourth order
terms in the expansion of the inverse Green’s function
(13). They are calculated using the normal metal Green’s
functions with zero energy gap, see Appendix B3. This
procedure is quite standard [40] (see also Eqs. (B.7, B.11)).
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The superconducting part of the action takes the form

Ssc = N0
1

β

∑
ωµ

∫
dx3

(π|ωµ|
8T
|∆|2

)
(37)

+N0

∫
dx
(
∆̄
[

ln

(
T

TC

)
− ξ2(0)∇2 + 4m2ξ2(0)v2

s

+Γ (∂τ − i2eV ) + 2e2bΦ2
]
∆+

b

2
|∆|4

)
.

Here the coherence length is ξ2(0) = π
8TD in the dirty

limit and ξ2(0) = (7ζ(3)/48π2)(vF/T )2 in the clean limit.
The fourth order coefficient is b = 7ζ(3)/(8π2T 2) [40].
The small coefficient Γ = N ′0/2λN

2
0 arises due to particle

hole asymmetry [41] and is usually neglected. The term
containing this coefficient describes the small difference
between electronic and ionic densities resulting from the
fluctuations of the order parameter. It occurs in the quoted
gauge invariant form, since the time derivative from the
Cooperon combines with the term ∼ ∆2V from the third
order expansion, see equation (B.13). We will see in the
next section that the same term arises also at low temper-
atures.

The term involving the second order spatial deriva-
tive can be combined with the v2

s∆
2 term from the fourth

order terms in the expansion into one gauge invariant sec-
ond order derivative ξ2(0)|(∇−i2e

c A)∆|2. The Φ2∆2 term,
however, does not straightforwardly combine with time
derivatives into gauge invariant time derivatives. The rea-
son is that close to TC dissipative and Hamiltonian fre-
quency dependences mix. As an example, the dissipative
|ωµ| term [38] in equation (37), which turns into the dissi-
pative time derivative of the real time TDGL equation af-
ter an analytic continuation, clearly cannot be made gauge
invariant. Since the second and higher order time deriva-
tives are usually irrelevant as compared to the dissipative
|ωµ| term, we do not include them in equation (37).

Let us also note that the expression (37) is cor-
rect only in the limit of low frequencies and wave vec-
tors ωµ, Dq

2 < 4πT . For larger frequencies the expres-
sion becomes more complicated, as we can no longer
expand the kernel h0 in ωµ/4πT , e.g., Ψ(1/2+ωµ/4πT )−
Ψ(1/2) → πωµ/8T (Ψ is the digamma function, see
Appendix B). Also the gradient terms in equation (37)
should be modified in this case. As the corresponding ex-
pressions turn out to be quite tedious we do not present
them here. For some problems, however, these modifica-
tions become significant, especially because the validity
of the GL expansion (37) is restricted to temperatures
T ∼ TC, in which case ωµ is never really smaller than
4πT .

The action Snm is also important for the description
of the dynamical properties of the superconductor and
describes dissipation in the “sea” of the remaining normal
electrons. It explicitly depends on the order parameter,
since also the polarization bubbles can be expanded in
∆, giving rise to additional contributions. Expanding the
bubble g0 + f0 (see Eqs. (B.9, B.10)) up to the second
order in ∆, we obtain in the limit of small frequencies and

wave vectors [15,16]

g0 + f0 = −N0
Dq2

|ωµ|
−N0

π∆2

4|ωµ|T
· (38)

For the part of the effective action concerned with the
electric field, we find

Snm + Sem =

∫
d̄q
(

1 +
4πσ

|ωµ|
+

2π2e2N0

q2|ωµ|T
∆2
)E2

8π
. (39)

The dependence of the action Snm on ∆ is impor-
tant in dirty superconductors and accounts for the
Maki-Thompson fluctuation enhancement of the conduc-
tivity near TC [15,16]. The Azlamazov-Larkin fluctuation
correction to the conductivity is already present in the
TDGL action Ssc (37) due to the presence of the v2

s∆
2

term [14].
Extensions of the elegant TDGL action into the super-

conducting phase have turned out to be hard [21]. Only
in the presence of a large amount of paramagnetic impu-
rities [42] or very close to TC [43] is this possible.

4 Dynamics at lower temperatures

4.1 Electromagnetism

We now evaluate the contents of equation (28) in the su-
perconducting state with an equilibrium gap ∆0. We first
focus on the parts involving E and Φ that are related to
the electric field and the Josephson relation. For the pref-
actor of the Φ2 term, the Josephson susceptibility, we take
the bubble χJ = 8∆0k0/iωµ = 2N0ns/n at zero frequency
and momentum. At zero frequency and small momentum
the bubble that multiplies E2 is χE = 2e2g1/(miωµ) ≈
2e2N0nn/(nq2). The action reads

Seff =

∫
d̄q
([ 1

8π
+
e2N0

q2

nn

n

]
E2 + e2N0

ns

n
Φ2
)
. (40)

It describes metallic screening of the electrostatic poten-
tial V with the full electronic density n, to which both
terms in equation (40) contribute, and superconducting
screening with superfluid density ns, only through the sec-
ond term, to enforce the Josephson relation V = ϕ̇/2e.
At higher frequencies and momenta, weight shifts from
the term ∼ ns to the term ∼ nn in such a way that the
plasma frequency and Thomas-Fermi screening length re-
main constant. The higher order frequency and momen-
tum dependence of the kernels is not easy to extract. For
low frequency and momentum, one typically finds correc-
tions of order ωµ/∆0 and vFq/∆0 or Dq2/∆0. In the oppo-
site limit, for high frequencies and momenta, the kernels
reduce to their normal state form, and we recover dissi-
pation in the dirty limit for frequencies ∆0 < ωµ < τ−1

r

(cf. Eq. (35)). In the clean limit such an intermediate fre-
quency regime does not exist.

We now turn to the parts of equation (28) that
are related to the magnetic field and the superfluid
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velocity. To lowest order in the external momentum
g3≈g2≈(p2

F/3q2)g0 + · · · and f3≈f2≈(p2
F/3q2)f0 + · · · ,

so that the combination χM ∼ g3 +f3− g2−f2 is equal to
zero in the q → 0 limit. What remains is the evaluation of
the London susceptibility χL = −8m∆0k1 = mns at zero
frequency and momentum, and we obtain

Seff =

∫
d̄q
(B2

8π
+
mns

2
v2

s

)
. (41)

This action describes transverse screening of the magnetic
field in a superconductor and is related to the London
theory.

Summarizing: at high frequencies ωµ � ∆0 and mo-
menta q � ξ−1 the electromagnetic properties are those
of a normal metal. At low frequencies and momenta a su-
perconductor screens, in addition to electric fields, also
magnetic fields.

4.2 Dynamics of the energy gap and particle-hole
asymmetry

The dynamics of the fluctuations of the amplitude of the
energy gap ∆L are governed by the combination χA =
[2λ−1 +2f0(q)+h0(q)+h0(−q)]. The corresponding mode
is heavily overdamped due to the coupling to particle-hole
pairs, and starts off at frequencies 2∆0 as discussed in
references [22,23].

We now turn to the particle-hole symmetry breaking
action (26). To lowest order in the frequency and momen-
tum, we obtain χΓ (q) = h0(q) − h0(−q) = 2N0Γ iωµ,

χ
‖
Γ (q) = −2ie[k0(q) + k0(−q)] = −4ieN0Γ∆0, and
χ⊥Γ (q) = 2[k1(q) − k1(−q)] = 0. Together with the term
|∆1|2V from the third order expansion of the effective ac-
tion, we find

Ssc + Sph =

∫
dx
(
N0

ns

n
|∆1|

2

−2ieN0ΓΦ
(
|∆0 +∆1|

2 − |∆0|
2
))
, (42)

as announced in the introduction. Apparently, the contri-
bution to the action that couples the amplitude of the gap
to the chemical potential for Cooper pairs, is independent
of temperature and the mean free path. Close to TC ex-
actly the same term, with ∆0 ≡ 0 appeared already in the
TDGL expansion (see Eq. (37)). The coupling constant Γ
of this term is usually small, and Sph is irrelevant, except
for inhomogeneous problems related to vortex motion [9].

In the core of a vortex the energy gap goes to zero,
and this local variation of the gap induces a local charge
density modulation, for which the action Sph contains the
source term [35]. Moreover, due to the singular phase field
around a vortex, together with the suppression of the gap
in the core, the action Sph gives rise to a small additional
force per length on vortices, −2πN0Γ∆

2
0vL × ẑ, which is

proportional and perpendicular to the vortex velocity vL

(ẑ is the unit vector along a vortex in the direction of
the magnetic field) [9,30]. We do not find evidence for the
much larger force −πnsvL× ẑ found in references [36,44].

The transverse force from equation (42) includes those
parts of the Magnus and Iordanskii forces that are pro-
portional to the vortex line velocity, as well as the spec-
tral flow contribution [48]. In the (super-) clean limit, the
Kopnin-Kravtsov force due to localized quasi-particles in
the vortex core adds [8]. A further non-equilibrium cor-
rection to the transverse force on a vortex was identified
in reference [47]. For a review of the several forces on a
vortex-line, see, e.g., reference [45].

4.3 The uncharged limit

The limit where the electronic charge vanishes has re-
ceived some attention recently [26–29]. Although this case
is realized in superfluid 3He, the different order parame-
ter symmetry makes any s-wave considerations less use-
ful. Furthermore, the interactions between uncharged 3He
atoms is very different from the electron-electron interac-
tions as described by our starting point (3). In particular,
3He atoms are neutral and in the 3He system no back-
ground charge is present.

For completeness, however, we also discuss the un-
charged limit of our model (3). Putting e → 0 in equa-
tions (24, 26), we find to lowest order in momentum and
frequency for the phase part of the action

Ssc+Sph =N0

∫
d̄q
(
−iΓ∆2

0ϕ̇+
ns

4n

[
ϕ̇2+

v2
F

3
(∇ϕ)2

])
, (43)

which gives the standard acoustic Bogoliubov-Anderson
mode with velocity v = vF/

√
3. Note that the first term

in the phase action equation (43) is different from the
one obtained in references [26–29]. In particular, in con-
trast to references [26–29] no large topological term ineϕ̇/2
is present, only a much smaller term proportional to the
particle-hole asymmetry. The difference can be traced to
the near perfect cancellation between ionic and electronic
charge densities in our case.

For superconducting Bose-liquids a large topological
term is present in the effective action, since the bosonic
field itself can be taken as the order parameter at low
temperatures and as a result the phase is dual to the den-
sity. However, for Fermionic superconductors one rather
expects that the phase of the order parameter is dual to
the amplitude of the order parameter, i.e., to the energy
gap. As a consequence, instead of a term ineϕ̇, we expect
a term proportional to i∆2ϕ̇ in the effective action. This
is just the content of equations (42, 43), which shows that
the constant of proportionality is given by the particle-
hole asymmetry parameter Γ .

5 Conclusion

We have reviewed the derivation of the effective theories
for BCS superconductors and discussed the corresponding
dynamics of electromagnetism and the amplitude of the
energy gap. Our main result (28) is a good starting point
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for investigations of quantum dynamical and statistical
problems in BCS superconductivity.

We have stressed the role of gauge invariance and the
corresponding Ward identities that express particle num-
ber conservation. Although a perturbation expansion can
violate gauge invariance, the Ward identities allowed us to
obtain explicitly gauge invariant results. In particular, we
have demonstrated how the Anderson-Higgs mechanism
occurs within BCS theory. In contrast, the role of Galilei
invariance that was stressed in references [26–29] does not
seem to play an important role in real BCS materials.

Furthermore, we included the effect of particle-hole
asymmetry in our considerations. We find a small topo-
logical term proportional to the particle-hole asymmetry,
that leads to an additional Hall-force on vortices (apart
from the Kopnin-Kravtsov, Magnus, and Iordanksii forces
[45]) as discussed in references [9,10]. Also, we have seen
that the structure of the theory is essentially the same
in the clean and dirty limits. In particular, the prefactor
of the topological term does not depend on the electronic
mean free path. The main difference between the clean
and dirty limits is the presence of an intermediate dissi-
pative regime ∆0 < ωµ, vFq < τ−1

r in the dirty limit. This
difference shows up for instance in the quantum dynamics
of low dimensional superconductors [13].
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Appendix A: The Ward identity

Gauge invariance gives rise to a Ward identity, which is
derived in this Appendix on the level of the Green’s func-
tions in order to obtain relations between the polarization
bubbles. On the level of vertex functions this Ward iden-
tity is discussed for instance in reference [2].

Let us consider the change in the Green’s function
upon rotating the electronic phase by ϕ. We have on the
one hand (we expand in ϕ)

Gφ(x, x′) = eiφ(x)σ3/2G(x, x′)e−iφ(x′)σ3/2

= G(x, x′) + δG(x, x′)

so that

δG(x, x′) =
i

2
[φ(x)σ3G(x, x′)− G(x, x′)σ3φ(x′)] (A.1)

=
i

2

∫
d̄qd̄peiqxeip(x−x′)φq[σ3Gp − Gp+qσ3],

whereas on the other hand

G−1
φ (x, x′) = eiφ(x)σ3/2G−1(x, x′)e−iφ(x′)σ3/2

= G−1(x, x′) + δG−1(x, x′)

so that

δG−1(y, y′) = δ(y − y′)
(
−

i

2
φ̇σ3 +

i

4
{∇,∇φ}1̂

+iφ∆σ+ − iφ∆̄σ−
)

and

δG(x, x′) = −

∫
dydy′G(x, y)δG−1(y, y′)G(y′, x′)

= −

∫
d̄qd̄peiqxeip(x−x′)φqGp+q (A.2)

×

[
ωµ

2
σ3 −

i

2

Q

m
1̂ + i(∆σ+ − ∆̄σ−)

]
Gp.

Comparison of equations (A.1, A.2) leads to

σ3Gp − Gp+qσ3 =

Gp+q
[
iωµσ3 +Q/m1̂−∆σ+ + ∆̄σ−

]
Gp. (A.3)

The upper left and right components of equation (A.3)
read

G(p)−G(p+ q) = (iωµ +Q/m)G(p)G(p+ q)

+(−iωµ +Q/m)F̄ (p)F (p+ q)

−2∆F̄ (p)G(p+ q) + 2∆̄G(p)F (p+ q), (A.4)

F (p) + F (p+ q) = (iωµ +Q/m)F (p)G(p+ q)

+(−iωµ +Q/m)Ḡ(p)F (p+ q)

−2∆Ḡ(p)G(p + q) + 2∆̄F (p)F (p+ q). (A.5)

These identities generate the Ward identities for the elec-
tronic polarization bubbles, by tracing them over the in-
ternal momentum and frequency p together with some
function. The trace of equation (A.4) with 1 and Q/m
immediately gives

0 = iωµ[g0(q)− f0(q)] + q2/m[g1(q) + f1(q)]

+2∆0[k0(q)− k0(−q)] (A.6)

−n/2 = iωµ[g1(q)− f1(q)] + q2/m[g2(q) + f2(q)]

+2∆0[k1(q) + k1(−q)], (A.7)

and the trace of equation (A.5) with 1 yields

∆0λ
−1 =∆0[f0(q)−h0(q)]+iωµk0(−q)−(q2/m)k1(−q).

(A.8)

The Ward identities equations (A.6, A.7, A.8) are a re-
sult of gauge-invariance (particle number conservation)
and hold also after an impurity averaging procedure. They
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can be simplified further using f1 = 0 which holds by sym-
metry.

Along completely analogous lines, the invariance with
respect to rotations by exp(i1ϕ/2) leads to

iωµf0(q) = ∆0[k0(q)− k0(−q)],

−(q2/m)f2(q) = ∆0[k1(q) + k1(−q)]. (A.9)

Appendix B: The polarization bubbles

In this Appendix we evaluate the polarization bubbles for
broken particle-hole symmetry and summarize results in
several limits [2,17,46].

B.1 Clean limit

In our notation the unperturbed Green’s function in mo-
mentum space reads explicitly(

G F
F̄ Ḡ

)
=

1

ω2
ν + ξ2

p +∆2
0

(
−iων + ξp ∆0

∆̄0 − iων − ξp

)
. (B.1)

The kernels are calculated by doing the sum over Matsub-
ara frequencies first by contour integration. The notation

E =
√
ξ2
p +∆2

0 and E′ =
√
ξ2
p+q +∆2

0 is used, as well as∫
d̄Ω to denote a normalized angular integration. For the

bubble f0 we obtain

f0(q) =

∫
dξN(ξ)

∫
d̄Ω

1

2EE′

( [1− fE′ − fE]

ω2
µ + (E′ +E)2

Sf

+
[fE′ − fE]

ω2
µ + (E′ −E)2

Nf

)
. (B.2)

Here fE ≡ f(E) is the Fermi function, and Sf and Nf are

Sf = (E′ +E)∆2; Nf = (E′ −E)∆2.

For the other bubbles we obtain similar expressions with

Sg = [(E′ +E)(ξξ′ −EE′) + iωµ(ξ′E − ξE′)],

Ng = [(E′ −E)(ξξ′ +EE′)− iωµ(ξ′E + ξE′)],

Sk = [(E′ +E)ξ∆+ iωµE∆],

Nk = [(E′ −E)ξ∆− iωµE∆],

Sh = [−(E′ +E)(ξξ′ +EE′) + iωµ(ξ′E + ξE′)],

Nh = [−(E′ −E)(ξξ′ −EE′)− iωµ(ξ′E − ξE′)]. (B.3)

The remaining integral over momenta can in general not
be given in closed form. Let us therefore consider the sim-
ple limits. For zero external momenta and in the limit
ωµ � vFq, the kernel f0 reduces to

f0 = N0

∫
dξ

∆2
0

2E2

(
1− 2fE

2E
+
∂fE

∂E

)
=
N0

2

ns

n
· (B.4)

For the others we obtain

g0 = −N0 +
N0

2

ns

n
=
N0

2

−n− nn

n

h0 = −
1

λ
+
N0

2

ns

n
+N0Γ iωµ

k0 = N0Γ∆0 +
N0

4

ns

n

iωµ
∆0
· (B.5)

The first order expansion of the kernels in frequency and
momentum at zero temperature reads

f0 =
N0

2
−

N0

12∆2
0

(
ω2
µ +

v2
F

3
q2

)
+ · · ·

g0 = −
N0

2
+

N0

12∆2
0

(
ω2
µ −

v2
F

3
q2

)
+ · · ·

h0 = −
1

λ
+
N0

2
+N0Γ iωµ +

N0

6∆2
0

(
ω2
µ +

v2
F

3
q2

)
+ · · ·

k0 = N0Γ∆0 +
N0

4

iωµ
∆0

[
1−

1

6∆2
0

ω2
µ + · · ·

]
. (B.6)

In the normal metal T > TC and ∆0 ≡ 0 the expressions
simplify considerably. For q � 2kF we have, apart from
f0 = k0 = 0,

g0 = −N0

(
1−

iωµ
2vFq

ln

[
iωµ + vFq

iωµ − vFq

])
(B.7)

h0 = N0

[
π|ωµ|

8T
+ ξ2(0)q2 + iΓωµ − ln

(
2eγωD

πT

)]
,

where the clean limit coherence lengths is ξ2(0)=7ζ(3)v2
F/

(48π3T 2).
The bubbles are related to one another by the Ward

identities, and also by approximate identities in the limit
of low external momenta. As an example we discuss the
relation between g3, g2, and g0.

g3 =
{

(p× q)2/2q4
}
GG

≈
qaqb

q4

1

3
δabp2

F {1}GG =
p2

F

3q2
g0 ;

g2 =
{

[q · (p + q/2)]2/q4
}
GG

≈
qaqb

q4

1

3
δabp2

F {1}GG =
p2

F

3q2
g0. (B.8)

Here we have used (1/2)
∫ π

0 dθ sin θ cos2 θ = 1/3 and (1/2)∫ π
0

dθ sin θ sin2 θ = 2/3, and taken the internal momenta
at the Fermi energy. In doing so, one makes a slight error
and it can be shown that the leading term in the differ-
ence g3 − g2 is N0/12, which is responsible for Landau
diamagnetism.

B.2 Dirty limit

We use the notation ω = ων , ω′ = ων + ωµ, W =√
ω2+∆2

0, and W ′ =
√
ω′2 +∆2

0. In the presence of im-

purities we replace all frequencies and the gap by ω̃ = ηω
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and ∆̃0 = η∆0, with η = [1 + 1/(2τrW )], in the single

particle Green’s functions. In particular W̃ = W + 1/2τr
[46].

In the dirty limit it is more convenient to integrate over
energy first. By reversing the order one only misses a con-
stant −N0 in the expression for g0, which is added later
on. The integral over energy ξp and the angular integration
are straightforward. In the dirty limit when ∆0τr � 1, one
expands in vFqτr = ql and ωµτr. The full disorder aver-
aged polarization bubble including the vertex correction
due to impurity ladders is

f0 = πN0
1

β

∑
ων

∆2
0

WW ′(W +W ′ +Dq2)
, (B.9)

where D = τrv
2
F/3 is the diffusion constant. The other

kernels are

g0 = −N0 + πN0
1

β

∑
ων

WW ′ − ωω′

WW ′(W +W ′ +Dq2)
,

h0 = π
1

β

∑
ων

−N0(WW ′ + ωω′) +N ′0WW ′iω̃µ
WW ′(W +W ′ +Dq2)

,

k0 = π
1

β

∑
ων

N0(−iω∆0) +N ′0WW ′∆̃

WW ′(W +W ′ +Dq2)
· (B.10)

A considerable simplification occurs for T > TC when
∆0 ≡ 0. In this case the remaining sums over the in-
ternal frequencies can be carried out and yield differences
of digamma functions. The low momentum and frequency
expansion gives, apart from f0 = k0 = 0,

g0 = −N0
Dq2

|ωµ|+Dq2
, (B.11)

h0 = N0

[
π

8

|ωµ|+Dq2

T
+ iΓωµ − ln

(
2eγωD

πT

)]
·

In this limit, the kernels g0 and h0 are nothing but the Dif-
fuson and Cooperon. For temperatures T < TC no simple
expressions are available. However, the bubbles at zero
external momentum and frequency are known

f0(0) =
π

2
N0

1

β

∑
ων

∆2
0

(ω2
ν +∆2

0)3/2
=
N0

2

ns

n
(B.12)

See equation (B.5) for the other kernels.

B.3 Higher order bubbles

For the construction of the Ginzburg-Landau functional,
the diagrams with 3 Green’s functions at zero external
momenta are needed. The third order contribution I−3 is

independent of the mean free path

I−3 =

∫
d̄p[G(p)− Ḡ(p)]G(p)Ḡ(p)

=
1

β

∑
ων

∫
dξ(N0 + ξN ′0 + · · · )

−2ξ

(ω2
ν + ξ2)2

= −2N ′0
1

β

∑
ων

1

|ων |

∫ ∞
−∞

dxx2

(1 + x2)2

= −N ′0 ln

(
2eγωD
πT

)
≈ −N0Γ, (B.13)

and is proportional to the particle-hole asymmetry of the
problem, whereas the combination I+

3 is

I+
3 =

∫
d̄p[G(p) + Ḡ(p)]G(p)Ḡ(p) = 0. (B.14)

Finally, below TC we need the combination

Isc
3 =

∫
d̄p[G(p)− Ḡ(p)][3F (p)F (p) +G(p)Ḡ]

≈ −2N0Γ. (B.15)
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